\(\int (1-x)^{9/2} (1+x)^{3/2} \, dx\) [1075]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 17, antiderivative size = 109 \[ \int (1-x)^{9/2} (1+x)^{3/2} \, dx=\frac {9}{16} \sqrt {1-x} x \sqrt {1+x}+\frac {3}{8} (1-x)^{3/2} x (1+x)^{3/2}+\frac {3}{10} (1-x)^{5/2} (1+x)^{5/2}+\frac {3}{14} (1-x)^{7/2} (1+x)^{5/2}+\frac {1}{7} (1-x)^{9/2} (1+x)^{5/2}+\frac {9 \arcsin (x)}{16} \]

[Out]

3/8*(1-x)^(3/2)*x*(1+x)^(3/2)+3/10*(1-x)^(5/2)*(1+x)^(5/2)+3/14*(1-x)^(7/2)*(1+x)^(5/2)+1/7*(1-x)^(9/2)*(1+x)^
(5/2)+9/16*arcsin(x)+9/16*x*(1-x)^(1/2)*(1+x)^(1/2)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {51, 38, 41, 222} \[ \int (1-x)^{9/2} (1+x)^{3/2} \, dx=\frac {9 \arcsin (x)}{16}+\frac {1}{7} (x+1)^{5/2} (1-x)^{9/2}+\frac {3}{14} (x+1)^{5/2} (1-x)^{7/2}+\frac {3}{10} (x+1)^{5/2} (1-x)^{5/2}+\frac {3}{8} x (x+1)^{3/2} (1-x)^{3/2}+\frac {9}{16} x \sqrt {x+1} \sqrt {1-x} \]

[In]

Int[(1 - x)^(9/2)*(1 + x)^(3/2),x]

[Out]

(9*Sqrt[1 - x]*x*Sqrt[1 + x])/16 + (3*(1 - x)^(3/2)*x*(1 + x)^(3/2))/8 + (3*(1 - x)^(5/2)*(1 + x)^(5/2))/10 +
(3*(1 - x)^(7/2)*(1 + x)^(5/2))/14 + ((1 - x)^(9/2)*(1 + x)^(5/2))/7 + (9*ArcSin[x])/16

Rule 38

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[x*(a + b*x)^m*((c + d*x)^m/(2*m + 1))
, x] + Dist[2*a*c*(m/(2*m + 1)), Int[(a + b*x)^(m - 1)*(c + d*x)^(m - 1), x], x] /; FreeQ[{a, b, c, d}, x] &&
EqQ[b*c + a*d, 0] && IGtQ[m + 1/2, 0]

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 51

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m
+ n + 1))), x] + Dist[2*c*(n/(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x]
 && EqQ[b*c + a*d, 0] && IGtQ[m + 1/2, 0] && IGtQ[n + 1/2, 0] && LtQ[m, n]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{7} (1-x)^{9/2} (1+x)^{5/2}+\frac {9}{7} \int (1-x)^{7/2} (1+x)^{3/2} \, dx \\ & = \frac {3}{14} (1-x)^{7/2} (1+x)^{5/2}+\frac {1}{7} (1-x)^{9/2} (1+x)^{5/2}+\frac {3}{2} \int (1-x)^{5/2} (1+x)^{3/2} \, dx \\ & = \frac {3}{10} (1-x)^{5/2} (1+x)^{5/2}+\frac {3}{14} (1-x)^{7/2} (1+x)^{5/2}+\frac {1}{7} (1-x)^{9/2} (1+x)^{5/2}+\frac {3}{2} \int (1-x)^{3/2} (1+x)^{3/2} \, dx \\ & = \frac {3}{8} (1-x)^{3/2} x (1+x)^{3/2}+\frac {3}{10} (1-x)^{5/2} (1+x)^{5/2}+\frac {3}{14} (1-x)^{7/2} (1+x)^{5/2}+\frac {1}{7} (1-x)^{9/2} (1+x)^{5/2}+\frac {9}{8} \int \sqrt {1-x} \sqrt {1+x} \, dx \\ & = \frac {9}{16} \sqrt {1-x} x \sqrt {1+x}+\frac {3}{8} (1-x)^{3/2} x (1+x)^{3/2}+\frac {3}{10} (1-x)^{5/2} (1+x)^{5/2}+\frac {3}{14} (1-x)^{7/2} (1+x)^{5/2}+\frac {1}{7} (1-x)^{9/2} (1+x)^{5/2}+\frac {9}{16} \int \frac {1}{\sqrt {1-x} \sqrt {1+x}} \, dx \\ & = \frac {9}{16} \sqrt {1-x} x \sqrt {1+x}+\frac {3}{8} (1-x)^{3/2} x (1+x)^{3/2}+\frac {3}{10} (1-x)^{5/2} (1+x)^{5/2}+\frac {3}{14} (1-x)^{7/2} (1+x)^{5/2}+\frac {1}{7} (1-x)^{9/2} (1+x)^{5/2}+\frac {9}{16} \int \frac {1}{\sqrt {1-x^2}} \, dx \\ & = \frac {9}{16} \sqrt {1-x} x \sqrt {1+x}+\frac {3}{8} (1-x)^{3/2} x (1+x)^{3/2}+\frac {3}{10} (1-x)^{5/2} (1+x)^{5/2}+\frac {3}{14} (1-x)^{7/2} (1+x)^{5/2}+\frac {1}{7} (1-x)^{9/2} (1+x)^{5/2}+\frac {9}{16} \sin ^{-1}(x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.62 \[ \int (1-x)^{9/2} (1+x)^{3/2} \, dx=\frac {1}{560} \sqrt {1-x^2} \left (368+245 x-656 x^2+350 x^3+208 x^4-280 x^5+80 x^6\right )-\frac {9}{8} \arctan \left (\frac {\sqrt {1-x^2}}{-1+x}\right ) \]

[In]

Integrate[(1 - x)^(9/2)*(1 + x)^(3/2),x]

[Out]

(Sqrt[1 - x^2]*(368 + 245*x - 656*x^2 + 350*x^3 + 208*x^4 - 280*x^5 + 80*x^6))/560 - (9*ArcTan[Sqrt[1 - x^2]/(
-1 + x)])/8

Maple [A] (verified)

Time = 0.17 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.89

method result size
risch \(-\frac {\left (80 x^{6}-280 x^{5}+208 x^{4}+350 x^{3}-656 x^{2}+245 x +368\right ) \left (-1+x \right ) \sqrt {1+x}\, \sqrt {\left (1+x \right ) \left (1-x \right )}}{560 \sqrt {-\left (-1+x \right ) \left (1+x \right )}\, \sqrt {1-x}}+\frac {9 \sqrt {\left (1+x \right ) \left (1-x \right )}\, \arcsin \left (x \right )}{16 \sqrt {1+x}\, \sqrt {1-x}}\) \(97\)
default \(\frac {\left (1-x \right )^{\frac {9}{2}} \left (1+x \right )^{\frac {5}{2}}}{7}+\frac {3 \left (1-x \right )^{\frac {7}{2}} \left (1+x \right )^{\frac {5}{2}}}{14}+\frac {3 \left (1-x \right )^{\frac {5}{2}} \left (1+x \right )^{\frac {5}{2}}}{10}+\frac {3 \left (1-x \right )^{\frac {3}{2}} \left (1+x \right )^{\frac {5}{2}}}{8}+\frac {3 \sqrt {1-x}\, \left (1+x \right )^{\frac {5}{2}}}{8}-\frac {3 \sqrt {1-x}\, \left (1+x \right )^{\frac {3}{2}}}{16}-\frac {9 \sqrt {1-x}\, \sqrt {1+x}}{16}+\frac {9 \sqrt {\left (1+x \right ) \left (1-x \right )}\, \arcsin \left (x \right )}{16 \sqrt {1+x}\, \sqrt {1-x}}\) \(127\)

[In]

int((1-x)^(9/2)*(1+x)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/560*(80*x^6-280*x^5+208*x^4+350*x^3-656*x^2+245*x+368)*(-1+x)*(1+x)^(1/2)/(-(-1+x)*(1+x))^(1/2)*((1+x)*(1-x
))^(1/2)/(1-x)^(1/2)+9/16*((1+x)*(1-x))^(1/2)/(1+x)^(1/2)/(1-x)^(1/2)*arcsin(x)

Fricas [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.61 \[ \int (1-x)^{9/2} (1+x)^{3/2} \, dx=\frac {1}{560} \, {\left (80 \, x^{6} - 280 \, x^{5} + 208 \, x^{4} + 350 \, x^{3} - 656 \, x^{2} + 245 \, x + 368\right )} \sqrt {x + 1} \sqrt {-x + 1} - \frac {9}{8} \, \arctan \left (\frac {\sqrt {x + 1} \sqrt {-x + 1} - 1}{x}\right ) \]

[In]

integrate((1-x)^(9/2)*(1+x)^(3/2),x, algorithm="fricas")

[Out]

1/560*(80*x^6 - 280*x^5 + 208*x^4 + 350*x^3 - 656*x^2 + 245*x + 368)*sqrt(x + 1)*sqrt(-x + 1) - 9/8*arctan((sq
rt(x + 1)*sqrt(-x + 1) - 1)/x)

Sympy [F(-1)]

Timed out. \[ \int (1-x)^{9/2} (1+x)^{3/2} \, dx=\text {Timed out} \]

[In]

integrate((1-x)**(9/2)*(1+x)**(3/2),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.61 \[ \int (1-x)^{9/2} (1+x)^{3/2} \, dx=\frac {1}{7} \, {\left (-x^{2} + 1\right )}^{\frac {5}{2}} x^{2} - \frac {1}{2} \, {\left (-x^{2} + 1\right )}^{\frac {5}{2}} x + \frac {23}{35} \, {\left (-x^{2} + 1\right )}^{\frac {5}{2}} + \frac {3}{8} \, {\left (-x^{2} + 1\right )}^{\frac {3}{2}} x + \frac {9}{16} \, \sqrt {-x^{2} + 1} x + \frac {9}{16} \, \arcsin \left (x\right ) \]

[In]

integrate((1-x)^(9/2)*(1+x)^(3/2),x, algorithm="maxima")

[Out]

1/7*(-x^2 + 1)^(5/2)*x^2 - 1/2*(-x^2 + 1)^(5/2)*x + 23/35*(-x^2 + 1)^(5/2) + 3/8*(-x^2 + 1)^(3/2)*x + 9/16*sqr
t(-x^2 + 1)*x + 9/16*arcsin(x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 237 vs. \(2 (77) = 154\).

Time = 0.36 (sec) , antiderivative size = 237, normalized size of antiderivative = 2.17 \[ \int (1-x)^{9/2} (1+x)^{3/2} \, dx=\frac {1}{1680} \, {\left ({\left (2 \, {\left ({\left (4 \, {\left (5 \, {\left (6 \, x - 37\right )} {\left (x + 1\right )} + 661\right )} {\left (x + 1\right )} - 4551\right )} {\left (x + 1\right )} + 4781\right )} {\left (x + 1\right )} - 6335\right )} {\left (x + 1\right )} + 2835\right )} \sqrt {x + 1} \sqrt {-x + 1} - \frac {1}{120} \, {\left ({\left (2 \, {\left ({\left (4 \, {\left (5 \, x - 26\right )} {\left (x + 1\right )} + 321\right )} {\left (x + 1\right )} - 451\right )} {\left (x + 1\right )} + 745\right )} {\left (x + 1\right )} - 405\right )} \sqrt {x + 1} \sqrt {-x + 1} - \frac {1}{120} \, {\left ({\left (2 \, {\left (3 \, {\left (4 \, x - 17\right )} {\left (x + 1\right )} + 133\right )} {\left (x + 1\right )} - 295\right )} {\left (x + 1\right )} + 195\right )} \sqrt {x + 1} \sqrt {-x + 1} + \frac {1}{6} \, {\left ({\left (2 \, {\left (3 \, x - 10\right )} {\left (x + 1\right )} + 43\right )} {\left (x + 1\right )} - 39\right )} \sqrt {x + 1} \sqrt {-x + 1} - \frac {1}{6} \, {\left ({\left (2 \, x - 5\right )} {\left (x + 1\right )} + 9\right )} \sqrt {x + 1} \sqrt {-x + 1} - \sqrt {x + 1} {\left (x - 2\right )} \sqrt {-x + 1} + \sqrt {x + 1} \sqrt {-x + 1} + \frac {9}{8} \, \arcsin \left (\frac {1}{2} \, \sqrt {2} \sqrt {x + 1}\right ) \]

[In]

integrate((1-x)^(9/2)*(1+x)^(3/2),x, algorithm="giac")

[Out]

1/1680*((2*((4*(5*(6*x - 37)*(x + 1) + 661)*(x + 1) - 4551)*(x + 1) + 4781)*(x + 1) - 6335)*(x + 1) + 2835)*sq
rt(x + 1)*sqrt(-x + 1) - 1/120*((2*((4*(5*x - 26)*(x + 1) + 321)*(x + 1) - 451)*(x + 1) + 745)*(x + 1) - 405)*
sqrt(x + 1)*sqrt(-x + 1) - 1/120*((2*(3*(4*x - 17)*(x + 1) + 133)*(x + 1) - 295)*(x + 1) + 195)*sqrt(x + 1)*sq
rt(-x + 1) + 1/6*((2*(3*x - 10)*(x + 1) + 43)*(x + 1) - 39)*sqrt(x + 1)*sqrt(-x + 1) - 1/6*((2*x - 5)*(x + 1)
+ 9)*sqrt(x + 1)*sqrt(-x + 1) - sqrt(x + 1)*(x - 2)*sqrt(-x + 1) + sqrt(x + 1)*sqrt(-x + 1) + 9/8*arcsin(1/2*s
qrt(2)*sqrt(x + 1))

Mupad [F(-1)]

Timed out. \[ \int (1-x)^{9/2} (1+x)^{3/2} \, dx=\int {\left (1-x\right )}^{9/2}\,{\left (x+1\right )}^{3/2} \,d x \]

[In]

int((1 - x)^(9/2)*(x + 1)^(3/2),x)

[Out]

int((1 - x)^(9/2)*(x + 1)^(3/2), x)